Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Curr Opin Cell Biol ; 85: 102251, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804774

RESUMEN

Nuclear pore complexes (NPCs) mediate the bidirectional transport of cargo across the nuclear envelope (NE). NPCs are also membrane remodeling machines with a capacity to curve and fuse the membranes of the NE. However, little is known about the interplay of NPCs and lipids at a mechanistic level. A full understanding of NPC structure and function needs to encompass how the NPC shapes membranes and is itself shaped by lipids. Here we attempt to connect recent findings in NPC research with the broader field of membrane biochemistry to illustrate how an interplay between NPCs and lipids may facilitate the conformational plasticity of NPCs and the generation of a unique pore membrane topology. We highlight the need to better understand the NPC's lipid environment and outline experimental avenues towards that goal.


Asunto(s)
Membrana Nuclear , Poro Nuclear , Poro Nuclear/metabolismo , Membrana Nuclear/metabolismo , Conformación Molecular , Fenómenos Biofísicos , Lípidos , Proteínas de Complejo Poro Nuclear/metabolismo
2.
Nat Cell Biol ; 25(9): 1290-1302, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591950

RESUMEN

The nuclear envelope (NE) is a spherical double membrane with elastic properties. How NE shape and elasticity are regulated by lipid chemistry is unknown. Here we discover lipid acyl chain unsaturation as essential for NE and nuclear pore complex (NPC) architecture and function. Increased lipid saturation rigidifies the NE and the endoplasmic reticulum into planar, polygonal membranes, which are fracture prone. These membranes exhibit a micron-scale segregation of lipids into ordered and disordered phases, excluding NPCs from the ordered phase. Balanced lipid saturation is required for NPC integrity, pore membrane curvature and nucleocytoplasmic transport. Oxygen deprivation amplifies the impact of saturated lipids, causing NE rigidification and rupture. Conversely, lipid droplets buffer saturated lipids to preserve NE architecture. Our study uncovers a fundamental link between lipid acyl chain structure and the integrity of the cell nucleus with implications for nuclear membrane malfunction in ischaemic tissues.


Asunto(s)
Membrana Nuclear , Poro Nuclear , Núcleo Celular , Elasticidad , Lípidos
3.
Elife ; 122023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37470705

RESUMEN

Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The Saccharomyces cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modeled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency, and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.


Asunto(s)
Condensados Biomoleculares , Proteínas Fúngicas , Entropía , Fractales , Simulación de Dinámica Molecular
4.
Sci Adv ; 8(6): eabl6863, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148185

RESUMEN

Nuclear pore complexes (NPCs) are membrane-embedded gatekeepers of traffic between the nucleus and cytoplasm. Key features of the NPC symmetric core have been elucidated, but little is known about the NPC basket, a prominent structure with numerous roles in gene expression. Studying the basket was hampered by its instability and connection to the inner nuclear membrane (INM). Here, we reveal the assembly principle of the yeast NPC basket by reconstituting a recombinant Nup60-Mlp1-Nup2 scaffold on a synthetic membrane. Nup60 serves as the basket's flexible suspension cable, harboring an array of short linear motifs (SLiMs). These bind multivalently to the INM, the coiled-coil protein Mlp1, the FG-nucleoporin Nup2, and the NPC core. We suggest that SLiMs, embedded in disordered regions, allow the basket to adapt its structure in response to bulky cargo and changes in gene expression. Our study opens avenues for the higher-order reconstitution of basket-anchored NPC assemblies on membranes.

5.
Lancet Reg Health Eur ; 5: 100086, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34396360

RESUMEN

BACKGROUND: The role of schools in the SARS-CoV-2 pandemic is much debated. We aimed to quantify reliably the prevalence of SARS-CoV-2 infections at schools detected with reverse-transcription quantitative polymerase-chain-reaction (RT-qPCR). METHODS: This nationwide prospective cohort study monitors a representative sample of pupils (grade 1-8) and teachers at Austrian schools throughout the school year 2020/2021. We repeatedly test participants for SARS-CoV-2 infection using a gargling solution and RT-qPCR. We herein report on the first two rounds of examinations. We used mixed-effects logistic regression to estimate odds ratios and robust 95% confidence intervals (95% CI). FINDINGS: We analysed data on 10,734 participants from 245 schools (9465 pupils, 1269 teachers). Prevalence of SARS-CoV-2 infection increased from 0·39% at round 1 (95% CI 028-0·55%, 28 September-22 October 2020) to 1·39% at round 2 (95% CI 1·04-1·85%, 10-16 November). Odds ratios for SARS-CoV-2 infection were 2·26 (95% CI 1·25-4·12, P = 0·007) in regions with >500 vs. ≤500 inhabitants/km2, 1·67 (95% CI 1·42-1·97, P<0·001) per two-fold higher regional 7-day community incidence, and 2·78 (95% CI 1·73-4·48, P<0·001) in pupils at schools with high/very high vs. low/moderate social deprivation. Associations of regional community incidence and social deprivation persisted in a multivariable adjusted model. Prevalence did not differ by average number of pupils per class nor between age groups, sexes, pupils vs. teachers, or primary (grade 1-4) vs. secondary schools (grade 5-8). INTERPRETATION: This monitoring study in Austrian schools revealed SARS-CoV-2 infection in 0·39%-1·39% of participants and identified associations of regional community incidence and social deprivation with higher prevalence. FUNDING: BMBWF Austria.

6.
Dev Cell ; 56(18): 2562-2578.e3, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34407429

RESUMEN

The cell nucleus is surrounded by a double membrane. The lipid packing and viscosity of membranes is critical for their function and is tightly controlled by lipid saturation. Circuits regulating the lipid saturation of the outer nuclear membrane (ONM) and contiguous endoplasmic reticulum (ER) are known. However, how lipid saturation is controlled in the inner nuclear membrane (INM) has remained enigmatic. Using INM biosensors and targeted genetic manipulations, we show that increased lipid unsaturation causes a reprogramming of lipid storage metabolism across the nuclear envelope (NE). Cells induce lipid droplet (LD) formation specifically from the distant ONM/ER, whereas LD formation at the INM is suppressed. In doing so, unsaturated fatty acids are shifted away from the INM. We identify the transcription circuits that topologically reprogram LD synthesis and identify seipin and phosphatidic acid as critical effectors. Our study suggests a detoxification mechanism protecting the INM from excess lipid unsaturation.


Asunto(s)
Grasas Insaturadas/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de la Membrana/metabolismo , Ácidos Fosfatidicos/metabolismo , Levaduras
7.
Euro Surveill ; 26(34)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34448449

RESUMEN

This study evaluates the performance of the antigen-based anterior nasal screening programme implemented in all Austrian schools to detect SARS-CoV-2 infections. We combined nationwide antigen-based screening data obtained in March 2021 from 5,370 schools (Grade 1-8) with an RT-qPCR-based prospective cohort study comprising a representative sample of 244 schools. Considering a range of assumptions, only a subset of infected individuals are detected with the programme (low to moderate sensitivity) and non-infected individuals mainly tested negative (very high specificity).


Asunto(s)
COVID-19 , SARS-CoV-2 , Austria , Humanos , Estudios Prospectivos , Instituciones Académicas , Autoevaluación
8.
J Cell Biol ; 220(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33599714

RESUMEN

In this issue, Thaller et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202004222) explore how the ESCRT protein Chm7 is recruited to sites of defective nuclear pore assembly. They show that a lipid, phosphatidic acid, is enriched at pathological nuclear envelope herniations, where it promotes Chm7 recruitment for membrane surveillance and repair.


Asunto(s)
Membrana Nuclear , Ácidos Fosfatidicos , Membranas , Proteínas
9.
Nature ; 579(7800): 592-597, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214243

RESUMEN

The conserved yeast E3 ubiquitin ligase Bre1 and its partner, the E2 ubiquitin-conjugating enzyme Rad6, monoubiquitinate histone H2B across gene bodies during the transcription cycle1. Although processive ubiquitination might-in principle-arise from Bre1 and Rad6 travelling with RNA polymerase II2, the mechanism of H2B ubiquitination across genic nucleosomes remains unclear. Here we implicate liquid-liquid phase separation3 as the underlying mechanism. Biochemical reconstitution shows that Bre1 binds the scaffold protein Lge1, which possesses an intrinsically disordered region that phase-separates via multivalent interactions. The resulting condensates comprise a core of Lge1 encapsulated by an outer catalytic shell of Bre1. This layered liquid recruits Rad6 and the nucleosomal substrate, which accelerates the ubiquitination of H2B. In vivo, the condensate-forming region of Lge1 is required to ubiquitinate H2B in gene bodies beyond the +1 nucleosome. Our data suggest that layered condensates of histone-modifying enzymes generate chromatin-associated 'reaction chambers', with augmented catalytic activity along gene bodies. Equivalent processes may occur in human cells, and cause neurological disease when impaired.


Asunto(s)
Nucleosomas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Ubiquitinación , Biocatálisis , Histonas/química , Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Viabilidad Microbiana , Transición de Fase , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
10.
Elife ; 82019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31112132

RESUMEN

Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.


Asunto(s)
Cinetocoros/química , Mapas de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomycetales/química , Unión Proteica
11.
Cell ; 174(3): 700-715.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29937227

RESUMEN

The inner nuclear membrane (INM) encases the genome and is fused with the outer nuclear membrane (ONM) to form the nuclear envelope. The ONM is contiguous with the endoplasmic reticulum (ER), the main site of phospholipid synthesis. In contrast to the ER and ONM, evidence for a metabolic activity of the INM has been lacking. Here, we show that the INM is an adaptable membrane territory capable of lipid metabolism. S. cerevisiae cells target enzymes to the INM that can promote lipid storage. Lipid storage involves the synthesis of nuclear lipid droplets from the INM and is characterized by lipid exchange through Seipin-dependent membrane bridges. We identify the genetic circuit for nuclear lipid droplet synthesis and a role of these organelles in regulating this circuit by sequestration of a transcription factor. Our findings suggest a link between INM metabolism and genome regulation and have potential relevance for human lipodystrophy.


Asunto(s)
Gotas Lipídicas/metabolismo , Lípidos de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular , Diglicéridos/metabolismo , Retículo Endoplásmico , Gotas Lipídicas/fisiología , Metabolismo de los Lípidos/fisiología , Lípidos , Proteínas de la Membrana , Ácidos Fosfatidicos/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(38): 10553-8, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601672

RESUMEN

Cotranscriptional ubiquitination of histone H2B is key to gene regulation. The yeast E3 ubiquitin ligase Bre1 (human RNF20/40) pairs with the E2 ubiquitin conjugating enzyme Rad6 to monoubiquitinate H2B at Lys123. How this single lysine residue on the nucleosome core particle (NCP) is targeted by the Rad6-Bre1 machinery is unknown. Using chemical cross-linking and mass spectrometry, we identified the functional interfaces of Rad6, Bre1, and NCPs in a defined in vitro system. The Bre1 RING domain cross-links exclusively with distinct regions of histone H2B and H2A, indicating a spatial alignment of Bre1 with the NCP acidic patch. By docking onto the NCP surface in this distinct orientation, Bre1 positions the Rad6 active site directly over H2B Lys123. The Spt-Ada-Gcn5 acetyltransferase (SAGA) H2B deubiquitinase module competes with Bre1 for binding to the NCP acidic patch, indicating regulatory control. Our study reveals a mechanism that ensures site-specific NCP ubiquitination and fine-tuning of opposing enzymatic activities.


Asunto(s)
Histonas/química , Proteínas de Saccharomyces cerevisiae/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitinación/genética , Regulación Enzimológica de la Expresión Génica , Histonas/genética , Humanos , Simulación del Acoplamiento Molecular , Nucleosomas/química , Nucleosomas/genética , Conformación Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/química , Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
13.
Nucleus ; 7(2): 126-31, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27028218

RESUMEN

Nuclear pore proteins interact dynamically with chromatin to regulate gene activities. A key question is how nucleoporin interactions mechanistically alter a gene's intranuclear position and transcriptional output. We reported recently on a direct interaction between the nuclear pore-associated TREX-2 complex and promoter-bound Mediator. This highlights how nuclear-pore associated adaptors gain regulatory access to the core transcription machinery. In this Extra View, we discuss an additional implication that arises from our work and the recent literature: how promoter elements may regulate mRNA metabolism beyond transcription initiation.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Transporte de ARN , Iniciación de la Transcripción Genética , Humanos , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Cell ; 162(5): 1016-28, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317468

RESUMEN

Nuclear pore complexes (NPCs) influence gene expression besides their established function in nuclear transport. The TREX-2 complex localizes to the NPC basket and affects gene-NPC interactions, transcription, and mRNA export. How TREX-2 regulates the gene expression machinery is unknown. Here, we show that TREX-2 interacts with the Mediator complex, an essential regulator of RNA Polymerase (Pol) II. Structural and biochemical studies identify a conserved region on TREX-2, which directly binds the Mediator Med31/Med7N submodule. TREX-2 regulates assembly of Mediator with the Cdk8 kinase and is required for recruitment and site-specific phosphorylation of Pol II. Transcriptome and phenotypic profiling confirm that TREX-2 and Med31 are functionally interdependent at specific genes. TREX-2 additionally uses its Mediator-interacting surface to regulate mRNA export suggesting a mechanism for coupling transcription initiation and early steps of mRNA processing. Our data provide mechanistic insight into how an NPC-associated adaptor complex accesses the core transcription machinery.


Asunto(s)
Complejo Mediador/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Porinas/química , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Porinas/genética , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Polimerasa II/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Transcriptoma , Difracción de Rayos X
15.
Dev Cell ; 33(3): 285-98, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25942622

RESUMEN

Nuclear pore complexes (NPCs) are selective transport channels embedded in the nuclear envelope. The cylindrical NPC core forms a protein coat lining a highly curved membrane opening and has a basket-like structure appended to the nucleoplasmic side. How NPCs interact with lipids, promoting membrane bending and NPC integrity, is poorly understood. Here we show that the NPC basket proteins Nup1 and Nup60 directly induce membrane curvature by amphipathic helix insertion into the lipid bilayer. In a cell-free system, both Nup1 and Nup60 transform spherical liposomes into highly curved membrane structures. In vivo, high levels of the Nup1/Nup60 amphipathic helices cause deformation of the yeast nuclear membrane, whereas adjacent helical regions contribute to anchoring the basket to the NPC core. Basket amphipathic helices are functionally linked to distinct transmembrane nucleoporins of the NPC core, suggesting a key contribution to the membrane remodeling events that underlie NPC assembly.


Asunto(s)
Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Transporte Biológico/genética , Transporte Biológico/fisiología , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
16.
J Biol Chem ; 290(9): 5298-310, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25548288

RESUMEN

Ubiquitin signaling on chromatin is linked to diverse aspects of genome regulation, including gene expression and DNA repair. The yeast RING E3 ligase Bre1 combines with the E2 Rad6 to monoubiquitinate histone H2B during transcription. Little is known about how Bre1 directs Rad6 toward transferring only a single ubiquitin to a specific lysine residue. Using a defined in vitro system, we show that the Bre1 RING domain interaction with Rad6 is minimally sufficient to monoubiquitinate nucleosomes at histone H2B Lys-123. In addition, we reveal a cluster of charged residues on the Bre1 RING domain that is critical for recognizing the nucleosome surface. Notably, a second Rad6 binding domain of Bre1 interacts with the E2 backside and potentiates ubiquitin transfer to the substrate. Taken together, our study establishes a molecular framework for how distinct RING and non-RING E3 elements cooperate to regulate E2 reactivity and substrate selection during gene expression.


Asunto(s)
Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Sitios de Unión/genética , Immunoblotting , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética
17.
Cell ; 141(4): 606-17, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20434206

RESUMEN

Deubiquitinating enzymes (DUBs) regulate diverse cellular functions by cleaving ubiquitin from specific protein substrates. How their activities are modulated in various cellular contexts remains poorly understood. The yeast deubiquitinase Ubp8 protein is recruited and activated by the SAGA complex and, together with Sgf11, Sus1, and Sgf73, forms a DUB module responsible for deubiquitinating histone H2B during gene expression. Here, we report the crystal structure of the complete SAGA DUB module, which features two functional lobes structurally coupled by Sgf73. In the "assembly lobe," a long Sgf11 N-terminal helix is clamped onto the Ubp8 ZnF-UBP domain by Sus1. In the "catalytic lobe," an Sgf11 C-terminal zinc-finger domain binds to the Ubp8 catalytic domain next to its active site. Our structural and functional analyses reveal a central role of Sgf11 and Sgf73 in activating Ubp8 for deubiquitinating histone H2B and demonstrate how a DUB can be allosterically regulated by its nonsubstrate partners.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Histona Acetiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Saccharomyces cerevisiae , Alineación de Secuencia , Factores de Transcripción/metabolismo , Ubiquitina
18.
Mol Cell ; 38(1): 6-15, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20385085

RESUMEN

Nuclear pore complexes (NPCs) composed of approximately 30 individual nucleoporins form huge macromolecular assemblies in the nuclear envelope, through which bidirectional cargo movement between the nucleus and cytoplasm occurs. Beyond their transport function, NPCs can serve as docking sites for chromatin and thereby contribute to the organization of the overall topology of chromosomes in conjunction with other factors of the nuclear envelope. Recent studies suggest that gene-NPC interactions may promote both transcription and the definition of heterochromatin-euchromatin boundaries. Intriguingly, several nucleoporins were linked to cancer, mostly in the context of chromosomal translocations, which encode nucleoporin chimeras. An emerging concept is that tumor cells exploit specific properties of nucleoporins to deregulate transcription, chromatin boundaries, and essential transport-dependent regulatory circuits. This review outlines new mechanistic links between nucleoporin function and cancer pathogenesis.


Asunto(s)
Regulación de la Expresión Génica , Neoplasias/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Animales , Cromatina/metabolismo , Humanos , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Neoplasias/patología , Neoplasias/fisiopatología , Proteínas de Complejo Poro Nuclear/genética
19.
J Biol Chem ; 285(6): 3850-3856, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20007317

RESUMEN

Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical hairpin fold, enabling them to wrap around an extended alpha-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1 binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the complex between Sus1 and the N-terminal region of Sgf11 that forms an extended alpha-helix around which Sus1 wraps in a manner that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix alpha1 of the Sus1-articulated hairpin does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider, M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049-12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.


Asunto(s)
Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Transactivadores/química , Factores de Transcripción/química , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Porinas/genética , Porinas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
J Biol Chem ; 284(18): 12049-56, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19269973

RESUMEN

Sus1 is an evolutionary conserved protein that functions both in transcription and mRNA export and has been proposed to contribute to coupling these processes in yeast. Sus1 mediates its different roles as a component of both the histone H2B deubiquitinating module (Sus1-Sgf11-Ubp8-Sgf73) of the SAGA (Spt-Ada-Gcn5 acetyltransferase) transcriptional co-activator and the mRNA export complex, TREX-2 (Sus1-Sac3-Thp1-Cdc31). We have dissected the different functions of Sus1 with respect to its partitioning in transcription and export complexes using a mutational approach. Here we show that the sus1-10 (E18A, S19A, and G20A) and sus1-12 (V73A and D75A) alleles of Sus1 can be dissociated from TREX-2 while leaving its interaction with SAGA largely intact. Conversely, the binding to both TREX-2 and SAGA was impaired in the sus1-11 allele (G37A and W38A), in which two highly conserved residues were mutated. In vitro experiments demonstrated that dissociation of mutant Sus1 from its partners is caused by a reduced affinity toward the TREX-2 subunit, Sac3, and the SAGA factor, Sgf11, respectively. Consistent with the biochemical data, these sus1 mutant alleles showed differential genetic relationships with SAGA and mRNA export mutants. In vivo, all three sus1 mutants were impaired in targeting TREX-2 (i.e. Sac3) to the nuclear pore complexes and exhibited nuclear mRNA export defects. This study has implications for how Sus1, in combination with distinct interaction partners, can regulate diverse aspects of gene expression.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Histonas/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte de ARN/fisiología , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Histonas/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación Missense , Poro Nuclear/genética , Proteínas Nucleares/genética , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Transactivadores/metabolismo , Ubiquitinación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...